第一章 光明顶星系(2 / 2)

流浪地球C计划 弘歌2018 6126 字 8个月前

土星最外层的光环,F光环,是由一些更小的光环组成的繁杂构造,它的一些“绳结(Knots)”是很明显的。科学家们推测这些所谓的结可能是块状的光环物质或是一些迷你的月亮。这些奇怪的织状物在旅行者1号发回的图像中很明显,但它们在旅行者2号发回的图象中看不见,可能是因为后者拍到的光环部分的成分与前者的略有不同。</p>

土星的卫星之间和光环系统中有着复杂的潮汐共振现象:一些卫星,所谓的“牧羊卫星”(比如土卫十五,土卫十六和土卫十七)对保持光环形状有着明显的重要性;土卫一看来应对卡西尼部分某种物质的缺乏负责任,这与小行星带中Kirkwood gaps遇到的情况类似;土卫十八处于Encke Gap中。整个系统太复杂,我们所掌握的还很贫乏。</p>

土星(以及其他类木行星)的光环的由来还不清楚,尽管它们可能自从形成时就有光环,但是光环系统是不稳定的,它们可能在前进过程中不断更新,也可能是比较大的卫星的碎片。</p>

像其他类木行星一样,土星有一个极有意义的磁场区。</p>

在无尽的夜空中,土星很容易被眼睛看到。尽管它可能不如木星那么明亮,但是它很容易被认出是颗行星,因为它不会象恒星那样“闪烁”。光环以及它的卫星能通过一架小型业余天文望远镜观察到。Mike Harvey的行星寻找图表指出此时水星在天空中的位置(及其他行星的位置),再由Starry Night这个天象程序作更多更细致的定制。</p>

光明顶星系的第六颗行星是天王星</p>

大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在旅行者2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。这一奇特的事实表明天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要高。然而天王星的赤道地区仍比两极地区热。这其中的原因还不为人知。</p>

而且它不是以大于90度的转轴角进行正向转动,就是以倾角小于90度进行</p>

逆向转动。问题是你要在某个地方画一条分界线,因为比如对金星是否是真的逆向转动(不是倾角接近180度的正向转动)就有一些争议。</p>

天王星基本上是由岩石和各种各样的冰组成的,它仅含有15%的氢和一些氦(与大都由氢组成的木星和土星相比是较少的)。天王星和海王星在许多方面与木星和土星在去掉巨大液态金属氢外壳后的内核很相象。虽然天王星的内核不像木星和土星那样是由岩石组成的,但它们的物质分布却几乎是相同的。</p>

天王星的大气层含有大约83%的氢,15%的氦和2%的甲烷。</p>

如其他所有的气态行星一样,天王星也有带状的云围绕着它快速飘动。但是它们太微弱了,以至只能由旅行者2号经过加工的图片才可看出。由哈博望远镜的观察显示的条纹却更大更明显。据推测,这种差别主要是由于季节的作用而产生的(太阳直射到天王星的某个低纬地区可能造成明显的白天黑夜的作用)。</p>

天王星显蓝色是其外层大气层中的甲烷吸收了红光的结果。那儿或许有像木星那样的彩带,但它们被覆盖着的甲烷层遮住了。</p>

像其他所有气态行星一样,天王星有光环。它们像木星的光环一样暗,但又像土星的光环那样由相当大的直径达到10米的粒子和细小的尘土组成。天王星有11层已知的光环,但都非常暗淡;最亮的那个被称为Epsilon光环。天王星的光环是继土星的被发现后第一个被发现的,这一发现被认为是十分重要的,由此我们知道了光环是行星的一个普遍特征,而不是仅为土星所特有的。</p>

旅行者2号发现了继已知的5颗大卫星后的10颗小卫星。看来在光环内还有一些更小的卫星。</p>

谈到天王星转轴的问题,还值得一提的是它的磁场也十分奇特,它并不在此行星的中心,而倾斜了近60度。这可能是由于天王星内部的较深处的运动而造成的。</p>

有时在晴朗的夜空,刚好可用肉眼看到模糊的天王星,但如果你知道它的位置,通过双筒望远镜就十分容易观察到了。通过一个小型的天文望远镜可以看到一个小圆盘状。迈克·哈卫的行星寻找图表显示了天王星以及其它行星在天空中的位置。越来越多的细节,越来越好的图表将被如灿烂星河这样的天文程序来发现和完成。</p>

光明顶星系的第七颗行星是冥王星</p>

由于冥王星的轨道极其怪异,因此有时它会穿过海王星轨道,自1979年以来海王星成为实际上距太阳最远的行星,在1999年冥王星才会再次成为最遥远的行星。</p>

海王星的组成成份与天王星的很相似:各种各样的“冰”和含有15%的氢和少量氦的岩石。海王星相似于天王星但不同于土星和木星,它或许有明显的内部地质分层,但在组成成份上有着或多或少的一致性。但海王星很有可能拥有一个岩石质的小型地核(质量与地球相仿)。它的大气多半由氢气和氦气组成。还有少量的甲烷。</p>

海王星的蓝色是大气中甲烷吸收了日光中的红光造成的。</p>

作为典型的气体行星,海王星上呼啸着按带状分布的大风暴或旋风,海王星上的风暴是太阳系中最快的,时速达到2000千米。</p>

和土星、木星一样,海王星内部有热源--它辐射出的能量是它吸收的太阳能的两倍多。</p>

在旅行者2号造访海王星的期间,行星上最明显的特征就属位于南半球的大黑斑(The Great Dark Spot)了。黑斑的大小大约是木星上的大红斑的一半(直径的大小与地球相似),海王星上的疾风以300米每秒(700英里每小时)的速度把大黑斑向西吹动。旅行者2号还在南半球发现一个较小的黑斑极一以大约16小时环绕行星一周的速度飞驶的不规则的小团白色烟雾,现在得知是“The Scooter”。它或许是一团从大气层低处上升的羽状物,但它真正的本质还是一个迷。</p>

然而,1994年哈博望远镜对海王星的观察显示出大黑斑竟然消失了!它或许就这么消散了,或许暂时被大气层的其他部分所掩盖。几个月后哈博望远镜在海王星的北半球发现了一个新的黑斑。这表明海王星的大气层变化频繁,这也许是因为云的顶部和底部温度差异的细微变化所引起的。</p>

海王星也有光环。在地球上只能观察到暗淡模糊的圆弧,而非完整的光环。但旅行者2号的图像显示这些弧完全是由亮块组成的光环。其中的一个光环看上去似乎有奇特的螺旋形结构。</p>

同天王星和木星一样,海王星的光环十分暗淡,但它们的内部结构仍是未知数。</p>

人们已命名了海王星的光环:最外面的是Adams(它包括三段明显的圆弧,今已分别命名为自由Liberty,平等Equality和互助Fraternity),其次是一个未命名的包有Galatea卫星的弧,然后是Leverrier(它向外延伸的部分叫作Lassell和Arago),最里面暗淡但很宽阔的叫Galle。</p>

海王星的磁场和天王星的一样,位置十分古怪,这很可能是由于行星地壳中层传导性的物质(大概是水)的运动而造成的。</p>

通过双目望远镜可观察到海王星(假如你真的知道往哪儿看),但假如你要看到行星上的一切而非仅仅一个小圆盘,那么你就需要一架大的天文望远镜。Mike Harvey的行星寻找图表指出此时海王星在天空中的位置(及其他行星的位置),再由Starry Night这个天象程序作更多更细致的定制。</p>

光明顶星系的第八颗行星是地球</p>

地球由于不同的化学成分与地震性质被分为不同的岩层(深度-千米):</p>

0- 40地壳</p>

40- 400 Upper mantle -上地幔</p>

400- 650 Transition region -过渡区域</p>

650-2700 Lower mantle -下地幔</p>

2700-2890 D'' layer - D“层</p>

2890-5150 Outer core -外核</p>

5150-6378 Inner core -内核</p>

地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。</p>

地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值×10e24千克):</p>

大气= 0.0000051</p>

海洋= 0.0014</p>

地壳= 0.026</p>

地幔= 4.043</p>

外地核= 1.835</p>

内地核= 0.09675</p>

地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由olivene,pyroxene(铁/镁硅酸盐),钙,铝构成。我们知道这些金属都来自于地震;上地幔的样本到达了地表,就像火山喷出岩浆,但地球的大部分还是难以接近的。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为:</p>

34.6%铁</p>

29.5%氧</p>

15.2%硅</p>

12.7%镁</p>

2.4%镍</p>

1.9%硫</p>

0.05%钛</p>

地球是太阳系中密度最大的星体。</p>

其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相当于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。</p>

不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板块间也有碰撞(如印度洋板块与亚欧板块)。目前有三大板块:</p>

美洲板块-</p>

亚欧板块-</p>

非洲板块-</p>

地球的表面十分年轻。在50亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻的证据。</p>

71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。</p>

地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。板块构造与生物活动维持了大气中二氧化碳到其他场所再返回的不停流动。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35摄氏度(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。</p>

丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。</p>