152、“飞鸟之景,未尝动也!”(2 / 2)

公孙龙说道:“我公孙龙是龙吗?”

关吏一愣,但仍坚持说道:“按照规定只要是赵国的马就不能入关,管你是白马还是黑马。”

公孙龙微微一笑,开始了忽悠,道:“马是指名称而说,白’是指颜色而说,名称和颜色不是一个概念。‘白马’这个概念,分开来就是‘白’和‘马’或‘马’和‘白,这是两个不同的概念。比如说你要马,给黄马、黑马可以,但是如果要白马,给黒马、给黄马就不可以,由此证明白马和马不是一回事!所以说白马非马。”

关吏越听越迷糊,被公孙龙这套高谈阔论搞得晕头转向,不知该如何对答,无奈只好让公孙龙骑白马过关。

于是,公孙龙的《白马论》名噪一时。

这个辩题割裂了事物共性和个性之间的联系,存在逻辑硬伤,可以说“白马是马”,但不可以说“白马非马”,因马是白马的必要条件,但不是充要条件;相反,有色的马(包含白马)是马的充要条件。

故有颜色的马必然是马,而不可能不是马。

数学中的充分必要条件,关于这一块有详细的解释,萧钦之以前就听过,如今再一想,十分轻松就能破了这个论题,笑问道:“无马,则无白马,有马,则有白马,若白马非马,则无马亦可有白马,反之亦然,故白马是马。”

这个有点绕脑子,不容易让人理解,萧钦之想了想又说道:“既白马非马,则白莲非莲、人妻非妻、人子非子、男人非人、女人非人。”

“嚯!”全场一阵惊呼,许多人恍然大悟,虽然这个辩题早就被破解了,但萧钦之在极短的时间内,用非常简洁的语言,说明白了,属实可以。

袁棐顿时傻眼了,没想到第一个辩题被萧钦之轻而易举的破了,随即发动第二招,既“飞鸟之景,未尝动也!”

古希腊学者芝诺曾提出一个类似的辩题叫“飞矢不动”,其认为一支射出的箭在飞,在一定时间内经过许多点,每一瞬间都停留在某一点上;许多静止的点集合起来,仍然是静止的,所以说飞箭是不动的。

“飞矢不动”与“飞鸟之景,未尝动也!”有类似的地方,即是名家探讨动与静关系的观点。飞鸟是动的,但“飞鸟之景(影)”是鸟一刹那间的投影,不动的。

那是由于把许多个别投影衔接起来的缘故。

战国时名家惠子的这个辩题,初步看到了动(运动)和静(静止)的辩证关系,看到了动中有静、静中有动,没有静也就没有动。

但这个辩题从某种角度来说,是不正确的,其割裂了物资与运动的联系,否定了物体的客观运动,试问如何能让飞鸟停在空中不动呢?

当然,萧钦之要是径直说道:“飞鸟不停,则影动。”固然能避重就轻的解了这个辩题,但同时也显得很没水平,因为其本质是一个哲学上的问题。

那么萧钦之是如何解决的呢?

萧钦之用纸和笔给大家上了一堂别开生面的课,首先介绍了点与线的关系,一张纸上,无数个点连在一起,构成了一条线,如果把每个点都当成一幅投影,刚好形成了“飞鸟之景,未尝动也”的整个运动。

所以,从数学角度来看,点有无数个,既飞鸟与景的投影有无数幅,要是一幅一幅的看完,实则是不成立的,到这里,有没有觉得很熟悉,对了,这就是微积分,从零无限趋向于一。

但客观事实是,飞鸟与影是一个完整的时空连续运动,不存在中途停止的可能,更不可能静止不动,成为一幅投影,由此悖论产生了。

这下子,大家渐渐能理解了。